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Abstract—The screen content (SC) pictures, such as
webpages, serve as a visible and convenient medium to
well represent the Internet information, and therefore the
visual quality of SC pictures is highly significant and has
attained a growing amount of attention. Accurate quality
evaluation of SC pictures not only provides the fidelity of
the conveyed information, but also contributes to the im-
provement of the user experience. In practical applications,
a reliable estimation of SC pictures plays a considerably
critical role for the optimization of the processing systems
as the guidance. Based on these motivations, we propose a
novel method for precisely assessing the quality of SC pic-
tures using very sparse reference information. Specifically,
the proposed quality method separately extracts the macro-
scopic and microscopic structures, followed by comparing
the differences of macroscopic and microscopic features
between a pristine SC picture and its corrupted version to
infer the overall quality score. By studying the feature his-
togram for dimensionality reduction, the proposed method
merely requires two features as the reference information
that can be exactly embedded in the file header with very
few bits. Experiments manifest the superiority of our al-
gorithm as compared with state-of-the-art relevant quality
metrics when applied to the visual quality evaluation of SC
pictures.

Index Terms—Screen content picture, sparse reference,
quality estimation, macroscopic/microscopic structure

I. INTRODUCTION

DUE to the massive expansion of smart phones which have
dramatically revolutionized many fields, exquisite screen

content (SC) pictures have been extensively employed as the
medium for webpage browsing, online gaming and advertising.
Compared with the ever-popular natural scene (NS) pictures
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Fig. 1: Example of an industrial safety monitoring-control system.

[1], SC pictures simultaneously contain pictorial, textual and
graphic contents. Such type of pictures can be broadly applied
in industrial safety monitor-control and early-warning systems,
as shown in Fig. 1. During the last few years, picture quality
assessment (QA) has long been one attractive research topic,
on account of its crucial applications to compression [2], [3],
enhancement [4], [5], restoration [6]–[8], transmission [9],
[10], etc. Generally speaking, the quality of a picture can be
assessed in two types of methods, containing subjective as-
sessment and objective assessment. The former one is decisive
and generally regarded as the benchmark because it accurately
judges the overall picture quality through human viewers.
Nonetheless, subjective assessment inevitably causes time-
consuming, expensive and labor-intensive issues, and therefore
is unable to be widely applied in the real-time application sce-
narios. To assess the picture quality efficiently and effectively,
many objective picture QA models were proposed based on
low-level vision [11]–[13], brain theory [14], [15], statistics
[16], [17], etc, for better mimicking the process of human
visual perception.

Nevertheless, the methods mentioned above are primarily
applied for NS pictures. As compared with the NS pictures,
the SC pictures have the features of thin lines, limited colors
and diversified shapes, which lead to a series of challenging
issues. In [18], [19], it is illustrated that those QA models
for NS pictures fail to evaluate SC picture quality. Hence,
a growing amount of attention has been focused on this
emerging research field. More recently, objective assessment
models using a few reference information were proposed.
These models, e.g. RWQMS [20], RQMSC [21], PBM [22],

1



0278-0046 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIE.2019.2905831, IEEE
Transactions on Industrial Electronics

can feasibly evaluate the quality of SC pictures even compared
with the QA models with complete reference information.

As compared with NS pictures, current research of quality
evaluation of SC pictures lies still in the infancy stage. On
one hand, abundant reference information is still required
(e.g., SPQA [18] and GDI [23]). On the other hand, the
prediction monotonicity is far from satisfactory (e.g., RWQMS
[20], RQMSC [21], PBM [22]). In order to circumvent the
deficiencies, we devise a novel method for accurately estimat-
ing the quality of SC pictures using little information of the
original picture. Motivated by many researches which indi-
cate that incorporating the gradient magnitude information in
picture QA performs well particularly in extracting structures
[11], [12], [24]–[27], in our work, the gradient magnitude
is fused respectively with the anisotropy measurement and
the uncertainty information to detect the macroscopic and
microscopic structures, such that the integral and detailed
structures of a picture can be captured. Subsequently, we
compare and combine the differences of macroscopic and
microscopic structures between a corrupted SC picture and
its corresponding lossless version to infer the overall quality
score. Finally, we apply the histogram establishment method
to reduce the dimensionality of features extracted. As such,
minimum additional information is required to be transmitted
to infer the visual quality, which is very practical for real
application scenarios.

The main contributions of this research are summarized as
follows. First, to the best of our knowledge, we propose a new
effective quality assessment framework of SC pictures, which
appropriately incorporates the measurements of macroscopic
and microscopic structural variations. Based on this frame-
work, our paper deploys the proper measurements to capture
the variations of macroscopic and microscopic structures, and
then fuses these two measurements to infer the overall quality
prediction of the input SC picture. Second, our QA approach
has achieved superior performance when comparing with the
current state-of-the-art QA metrics for SC pictures quality
evaluation. Third, the proposed QA model merely adopts very
sparse reference information, i.e. two features, which can be
exactly conveyed in the header file with very few bits.

The rest of this paper is organized as follows. In Section
II, the current QA metrics and models are introduced. Section
III presents the design philosophy and methodology of the
quality model. In Section IV, the experimental setup, results,
analysis and application are described and discussed. Finally,
the concluding remarks are given in Section V.

II. RELATED WORK

In the last few decades, many works have been committed
to picture QA, thus plenty of picture QA metrics and models
have been developed. In this section, we will review typical
QA models of NS pictures and SC pictures respectively.

QA models of NS pictures. Based on the gradient magni-
tude, quite a few QA models were proposed to estimate the
quality of NS pictures. Typical quality models are illustrated
as follows. In [11], considering the fact that the visual percep-
tion understands a picture mainly according to its low-level

features, Zhang et al. proposed the feature similarity (FSIM)
method. In [12], by using the gradient similarity to estimate
the changes in contrast and structure of pictures, Liu et al.
proposed the gradient similarity measurement (GSM) method.
In [25], by introducing visual saliency-based index, Zhang et
al. proposed the visual saliency induced index (VSI) to gauge
the picture quality in consistent with subjective assessment. In
[28], Li et al. put forward the divisive normalization domain
reduced-reference quality model (DNT-RR) on the basis of
a divisive normalization image representation. In [29], with
consideration of visual information fidelity, Wu et al. came
up with the visual information fidelity based reduced-reference
model (VIF-RR). In [30], based on a natural image statistic
model in the wavelet transform domain, Wang et al. proposed
the wavelet domain natural image statistic model (WNISM).
In [31], Narwaria et al. designed the fourier transform-based
scalable image quality metric (FTQM) to use the magnitude
and phase of the 2-D discrete Fourier transform. In [55], by
degrading the distorted image in several ways and to certain
degrees, Min et al. built the blind multiple pseudo reference
images-based (BMPRI) measure to calculate the similarities
between the distorted images and multiple pseudo reference
images. In [56], by utilizing a ‘reference’ called pseudo-
reference image (PRI) and a PRI-based blind picture QA
frame, Min et al. devised the Blind PRI (BPRI) to measure
the similarity between the distorted image’s and the PRI’s
structures.

QA models of SC pictures. A number of QA models of
SC pictures have been proposed during recent years. In [18],
Yang et al. proposed the screen content perceptual quality
assessment model (SPQA) by combining the perceptual dif-
ferences of pictorial and textual regions between a corrupted
SC picture and its associated uncorrupted counterpart to infer
the overall quality. In [23], Ni et al. put forward the gradient
direction-based index (GDI) method by gauging the gradient
direction in term of local information and applying a deviation-
inspired model for pooling. In [20], the reduced-reference
wavelet-domain quality measure of SC pictures (RWQMS)
was developed with the large-scale training data to learn a set
of features in the wavelet domain, according to the information
content, the fluctuations of energy and the generalized spectral
behavior. In [21], Wang et al. devised the reduced-reference
quality measure of screen content pictures (RQMSC) from the
viewpoint of SC picture quality perception. In [22], Jakhetiya
et al. established the prediction backed model (PBM) by
simultaneously fusing a perceptually relevant predictive model
and distortion classification, for evaluating the quality of SC
pictures.

III. METHODOLOGY

The design philosophy of the proposed model is to incor-
porate the macroscopic and microscopic structures together to
infer the SC picture quality. In particular, the structure-based
methods mainly depend on the supposition that the human
visual system (HVS) is used for extracting structural informa-
tion from a picture [34], and thus computing the similarity of
structures is a promising strategy to approximate the picture
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(a) Natural Scene pictures (b) Screen Content picture

(c) Macroscopic structure of (a) (d) Macroscopic structure of (b)

Fig. 2: Comparisons of the macroscopic structures of the natural
scene and screen content pictures. (a) and (b) are pristine natural
scene and screen content pictures; (c) and (d) are the maps of
macroscopic structures of (a) and (b).

quality. Several classical algorithms have been developed by
gauging the structural variations to well infer the quality of
pictures [11], [12], [24]–[26]. However, these algorithms may
fail when they are applied to the SC pictures mainly due to the
reason that the macroscopic structures of NS and SC pictures
are different. In particular, the macroscopic structures of NS
pictures can be regarded as image contours. By contrast, those
of SC pictures are concentrated in the textual regions, which
contain abundant amount of semantic information, as shown
in Fig. 2. With the above considerations, it is highly required
to propose a novel QA framework for the quality estimation
of SC pictures. Specifically, the macroscopic and microscopic
structures are first extracted, along with the histogram estab-
lished to dramatically reduce the dimensionality of reference
information to only two features. As such, those two features
can be used to measure the differences of the distorted and
pristine SC pictures. A diagram of the proposed quality model
is illustrated in Fig. 3.

A. Macroscopic Structure Measurement

In this research, a macroscopic structure measurement
(MASM) is developed to extract the vital structures of a SC
picture. The MASM model, on the basis of anisotropy, can
be regarded as a directional metric, which is constructed by
fusing the gradient and anisotropy measurements.

(1) Gradient magnitude. As discussed, the variations in
structures tend to attract the perception of HVS [34]. The
gradient magnitude which has been commonly used in the
applications of computer vision and image processing algo-
rithms such as contour inspection, optical flow estimation and
picture segmentation, is used in this research to detect the
structures in a picture. Specifically, this work computes the
gradient magnitude of a picture with the Scharr operator [10],
[11], [19], [35], [36], which can be calculated by the following
two convolution masks:

G(S) =
√
G 2
h +G 2

v (1)

where

Gh = Hh ⊗ S =
1

16

 +3 0 − 3
+10 0 − 10
+3 0 − 3

⊗ S (2)

Gv = Hv ⊗ S =
1

16

 +3 + 10 + 3
0 0 0
−3 − 10 − 3

⊗ S (3)

where S indicates a SC picture signal; Hh and Hv stand
for the Scharr convolution masks along the horizontal and
vertical directions. Based on the above convolution operation,
the gradient magnitude can be highlighted as the structural
information in textual and pictorial regions.

(2) Anisotropy measurement. The unequal visual sensa-
tion of stimuli that has congruent yet various directions can
be easily caused by the intensity-changing structures [37].
Accordingly, it is assumed that the strong visual perception
is prone to be measured by the macroscopic structures that
have intensity variation as well as a preferred direction. Such
macroscopic structures are regarded as the large anisotropy. By
contrast, the structures with homogeneous scattering, which
usually lead to less perception of structural changes, can be
regarded to be with small anisotropy. Based on the analysis,
the anisotropy measurement can serve as a straightforward
way of extracting the macroscopic structures. In practice, the
anisotropy measurement has been broadly explored in several
pioneering works to potentially capture local heterogeneity of
intensity variance [38]–[40]. In this research, the anisotropy
measurement not only implies the distribution of pixel inten-
sity of a SC picture but also indicates the basic directional
variation in the local vicinity of a pixel [41]–[43].

From the perspective of structure tensor, we can represent
the anisotropy measurement as a matrix generated from the
gradient magnitude of a SC picture. More specifically, the
structure tensor is formulated as:

T (i) =

( ∑
j 〈∇hSj ,∇hSj〉

∑
j 〈∇vSj ,∇hSj〉∑

j 〈∇hSj ,∇vSj〉
∑
j 〈∇vSj ,∇vSj〉

)
(4)

where j ∈ R(i) belongs to the vicinity of a pixel i with a
predefined radius; ∇h and ∇v indicate the partial differential
operators along the horizontal and vertical directions; 〈·, ·〉
is the inner product of a pair of vectors. In mathematical
form, T (i) is a semi-positive definite symmetric 2× 2 matrix,
with two eigenvectors η?i and η∗i and the corresponding two
eigenvalues λ?i and λ∗i (λ?i ≥ λ∗i ≥ 0).
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Fig. 3: Illustration of the workflow of the proposed QA method.

Accordingly, the anisotropy measurement can be defined as
the relative distance between the two eigenvalues λ?i and λ∗i ,

A(i) =
λ?i − λ∗i + ε

λ?i + λ∗i + ε
(5)

where ε is a small constant to avoid the division-by-zero case.
Eqn. (5) points out that the minimum value and maximum
value in A are zero and one. The anisotropy measurement A
equals to or approximates the maximum value “one”, when
the structures have significant changes in the pixel intensity,
namely, 1) λ?i � λ∗i ; 2) λ?i > 0 and λ∗i = 0. By contrast,
as for the structures that have the uniform direction, namely
λ?i ≈ λ∗i , A converges to the minimum value “zero”. The
inner product operation 〈η?i ,η∗i 〉, bounded from 0 to 1, serves
to evaluate the difference of the two vectors in terms of the
direction. In other words, the angle between the above two
vectors ranges from 0 to π, and when a vector is orthogonal
to the other, the value of inner product approaches 0.

The pixel of a SC picture with fine anisotropy is convenient-
ly perceived in most cases, such that the anisotropy measure-
ment supplies a better way to find the primary direction of a
SC picture. In view of the above considerations, our MASM
model can be defined as follows:

MASM(S) = G ·A (6)

where G and A are yielded by Eqns. (1)-(3) and Eqns. (4)-(5),
respectively.

To sum up, Fig. 2 describes the calculation of MASM by
incorporating gradient magnitude and anisotropy measuremen-
t, as presented in Eqn. (6). As illustrated in Fig. 1, one can
observe that the MASM model can be adequately applied in
suppressing the minor textures, which are visually impercep-
tible. Meanwhile, it is also able to maintain the dominant
structures with large anisotropy, as well as strengthen the edges
of objects to detect the macroscopic structures from a SC
picture.

B. Microscopic Structure Measurement

Recent studies, such as the Bayesian brain theory [44]
and free-energy principle [45], have revealed that the HVS
actively deduces the visual inputs using the internal generative
mechanism. The primary visual information plays a particu-
larly critical role in understanding and recognizing a picture,
whereas the uncertain information, which can be caused by the
gap between the real scene and its estimation from the brain,
cannot be well explained by the HVS. Some early researches
show that the picture QA is much related to the uncertain
information, and toward qualifying the uncertain information,
it is required to compare the reference with the orderly signals
which are derived from the inference procedure of the brain.
With these considerations, we introduce a microscopic struc-
ture measurement (MISM), which is mathematically defined
by gauging the primary visual information and the uncertain
information.

(1) Gradient magnitude. The computation of gradient mag-
nitude can be found in the above subsection.

(2) Uncertain information. When a picture is perceived, the
input visual signal enters the brain after passing through the
HVS channel. During this process, the lens play the role of
a strong low-pass filter which can eliminate specific high-
frequency information [46], [47]. Essentially, the process of
human visual perception can be approximately modeled as a
low-pass filter [34]. By fully taking the particular features of
the HVS and SC pictures into consideration, we can fuse the
Gaussian and motion low-pass filters to measure the uncer-
tainty information for effectively reflecting the artifacts around
high-contrast edges [48], accounting for the viewing behavior
of textual content, and validly measuring the uncertainty
information produced during the phases of eye “fixation” and
“saccade” [49], [50].

Specifically, a Gaussian filter can be computed by

Hg(p, q) =
1

2πδ2
exp

(
−p

2 + q2

2δ2

)
, (7)
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(a) SC picture (b) Microscopic structure of (a)

Fig. 4: Illustration of microscopic structures of screen content
pictures: (a) is a pristine screen content picture; (b) is the map of
microscopic structures of (a).

where δ is the standard deviation that controls the smooth-
ing strength. Subsequently, we can produce the Gaussian
smoothed picture by convoluting it with the input SC picture
S:

Sg = S ⊗Hg. (8)

As such, the uncertain information is obtained by quantifying
the gap between S and Sg . Owing to the properties of
unique maximum, boundedness and symmetry, we utilize the
normalized version of gradient similarity [26]:

GSg = f(S, Sg) =
(G(S)−G(Sg))

2

G2(S) +G2(Sg)
. (9)

The motion filter is expressed by

Hm (p, q) =

{
1/t if Γ(p, q, φ) = 0,Υ(p, q) ≤ t2/4
0 otherwise (10)

where Γ(p, q, φ) = p sinφ+ q cosφ with φ denoting a special
direction of motion filter; Υ(p, q) = p2 + q2; t indicates the
amount of motion in pixels which is taken into account in
the convolution procedure. The motion filtered picture can be
produced by convoluting it with the input SC picture S:

Sm = S ⊗Hm. (11)

In analogy to the Gaussian filters, the uncertain information
derived from the motion blur is expressed as

GSm = f(S, Sm) =
(G(S)−G(Sm))

2

G2(S) +G2(Sm)
. (12)

Comprehensively, as for the SC picture S, we compute the
amount of uncertain information via a simple direct average
[19], as defined as follows:

U =
1

2
(GSm +GSg). (13)

Finally, our MISM model is calculated by

MISM(S) = G · U. (14)

where G and U are derived by using Eqns. (1)-(3) and Eqns.
(7)-(13) respectively. The maps derived by applying the MISM
model are illustrated in Fig. 4. It can be found that the detailed
structures are found and highlighted by comparison with the
results of the MASM model shown in Fig. 2.

C. Overall Quality Measure

Based on the above-mentioned analysis, it is reasonable
to properly incorporate the MASM and MISM models, in
order to compensate the disadvantage of each component
and achieve better prediction accuracy. More concretely, to
noticeably promote the process of distortion comparison, we
firstly distinguish the insignificant and significant structures by
passing them through a non-linear mapping, the principle of
which lies in that the insignificant structures corresponds to
0 and the significant ones are associated to 1. The significant
and insignificant feature values can be achieved by using the
psychometric function with the sigmoid shape [51]. This work
adopts the Galton’s ogive [52], which is in the formulation of
a cumulative normal distribution function (CDF):

C (s) =
1√
2πφ

∫ s

−∞
exp

[
− (t− κ)

2

2φ2

]
dt (15)

where C (s) is the prediction probability density applied for
distinguishing the insignificant and significant structures; κ is
the modulation threshold; s is the stimulus amplitude; φ is
the parameter controlling the slope of prediction probability
variation. In this work we empirically assign φ as a fixed value
of 0.05. By separately passing the maps of MASM and MISM
models through the CDF, for an input SC picture, we can
acquire its associated two significance maps.

Subsequently, in practice, we perform the above feature
extraction on the pristine SC picture Ṡ and its corresponding
corrupted version S̈. However, using the pristine picture as
the reference information for quality evaluation leads to the
significant burden of transmission, which is impractical. To
overcome this difficulty, this work makes use of the histogram
for signifying the distribution. Essentially, such solution aims
to reach to a good tradeoff between the quality prediction
performance and the reference information data rate. We first
discuss how to apply the solution to the MASM model. In par-
ticular, we can divide its distribution range of Φ([dmin, dmax])
into N equal-length gaps. The histogram bin depends on the
number of elements by setting Wk as follows:

hk = |Wk| , Wk = {w|Φ (w) ∈ Jk} (16)

where

Jk =

[
dmin + (k − 1)

d̃

N
, dmin + k

d̃

N

]
, d̃ = dmax − dmin.

(17)
The histogram of the lossless SC picture can be measured as

HṠ(k) = hk

/ N∑
l=1

hl. (18)

The identical operation is applied to the distorted picture S̈ to
get HS̈(k). The value of each histogram bin is associated to
the probability of the interval. The score of the MASM model
is yielded by comparing the two histogram as follows:

QMASM(Ṡ, S̈) =
1

N

N∑
k=1

(
min{HṠ(k), HS̈(k)}+ ε

max{HṠ(k), HS̈(k)}+ ε

)
(19)
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where min{·, ·} and max{·, ·} are used to find the minimum
and maximum values from two values; ε is a tiny positive
constant closed to zero, in order to prevent the denominator
from zero when max{HṠ(k), HS̈(k)} approaches zero; N is
set to be 2 for simplicity and simultaneously for reducing the
burden of transmission as much as possible. It is quite evident
that the value of QMASM(Ṡ, S̈) ranges from [0, 1]. The larger
the QMASM(Ṡ, S̈) value, the better the quality of the input SC
picture. Moreover, we employ the same process to the MISM
map and derive its score QMISM(Ṡ, S̈).

Finally, the overall picture quality score can be attained by
multiplying the scores of the MASM and MISM models, i.e.
QMASM(Ṡ, S̈) and QMISM(Ṡ, S̈):

Q(Ṡ, S̈) = QMASM(Ṡ, S̈) ·QMISM(Ṡ, S̈)
α

(20)

where α is an exponential parameter for adjusting the signifi-
cances of two terms. Here we suppose the two terms have the
equivalent importance and thus simply set α as 1.

IV. EXPERIMENTS AND ANALYSIS

In this section, we aim to validate the performance of the
proposed method from the perspectives of prediction accuracy,
monotonicity and consistency. We first set up the experimental
protocols by introducing the quality measure, testing database
and evaluation criteria, and then the experimental results
including performance, statistical significance, visualized com-
parisons and application are provided.

A. Experimental Setting

(1) Quality Measures. In this work, we have collected 15
state-of-the-art quality metrics, which can be divided into the
following five categories according to their application scenar-
ios. The first category is composed of three typical algorithms
based on gradient magnitude and the whole information of
the lossless picture, including FSIM [11], GSM [12], and
VSI [25]. The second category includes five algorithms using
only partial reference information, i.e. DNT-RR [28], VIF-
RR [29], WNISM [30], FTQM [31], and SDM [53]. The
third category consists of two referenceless picture quality
assessment methods, i.e. BMPRI [55], BPRI [56]. The fourth
category is made up of two recently devised metrics specific
for quality evaluation of SC pictures, i.e. SPQA [18] and GDI
[23]. The last category is composed of three QA algorithms,
including RWQMS [20], RQMSC [21] and PBM [22], which
were devoted to the SC picture quality assessment under the
condition of partial reference information available.

(2) Testing Database. In order to verify the performance
of the proposed QA model, we use the screen image quality
assessment database (SIQAD) [18], which includes the most
diversified types of distortions. This database was established
by Nanyang Technological University in 2015. It is composed
of 20 reference SC pictures and 980 distorted counterparts.
Those 980 distorted pictures are generated by applying seven
distortion types with seven grades to the 20 reference SC
pictures. The seven types of distortions are contrast change,
Gaussian blur, motion blur, Gaussian noise, layer segmentation

based coding, JPEG compression, and JPEG2000 compres-
sion, respectively. When building the SIQAD database, beyond
20 participants graded the 980 pictures at the observing
distance of 2.25 time the screen height away from the display
device. The quality score has the minimum and maximum
values of 0 and 10 with the interval of 1. The differential
mean opinion score (DMOS) of each picture in the SIQAD
database is normalized to [24.2, 90.1].

(3) Evaluation Criteria. Using the SIQAD database as a
testing platform, we compare the proposed QA metric with
the above-mentioned 15 models by calculating the similarities
between the objective scores and the corresponding subjective
scores of images. The subjective opinion scores were derived
by conducting subjective assessment experiments to collect
the opinions of human viewers. The subjective scores of
human viewers are generally considered as the most accurate
measures. Based on those subjective scores, the correlation in
terms of five evaluation criteria can be calculated and used
for the performance comparison. Three of the five indices are
Kendall’s rank correlation coefficient (KRC), Spearman rank
correlation coefficient (SRC) and Pearson linear correlation
coefficient (PLC), which have the monotonically increasing
relationship with the prediction performance. More specifical-
ly, the PLC, as a commonly used index in picture QA, is
measured to gauge the strength of linear association between
two variables:

PLC =

∑M
l=1(µl − µ̄) · (νl − ν̄)√∑M

l=1(µl − µ̄)2 ·
∑
l(νl − ν̄)2

(21)

where M stands for the total number of the SC pictures; µl
is the mapped objective score for the l-th picture by using a
logistic regression function [54] and νl is the corresponding
subjective score. µ̄ and ν̄ represent the mean score of µ and ν
over the testing set. The SRC, characterized by estimating the
evaluation monotonicity, is a very useful tool for comparative
data analysis in picture QA and is computed as follows:

SRC = 1−
6
∑N
l=1(µl − νl)2

M(M2 − 1)
. (22)

The KRC, aiming to estimate the degree of similarity between
two sets of ranks given to a same set of objects, is formulated
as

KRC =
2(Mc −Md)

M(M − 1)
(23)

where Mc and Md respectively stand for the number of
concordant and discordant pairs in the database. The other two
criteria, i.e. mean absolute error (MAE) and root mean-squared
error (RMS), have the monotonically decreasing relationship
with the prediction accuracy, and they are defined by

MAE =
1

M

M∑
l=1

∣∣∣µl − νl∣∣∣, (24)

RMS =

√√√√ 1

M

M∑
l=1

(µl − νl)2. (25)
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TABLE I: Comparisons of 15 state-of-the-art QA algorithms from the five evaluation criteria on the SIQAD database.

TABLE II: Statistical significance comparison of the proposed metric and competing QA models with the f-test on SIQAD.

B. Performance

(1) Performance Comparison. Table 1 tabulates the perfor-
mance result of our proposed quality method as well as 15
popular or state-of-the-art picture QA metrics on the testing
SIQAD database. The KRC, SRC, PLC, MAE and RMS of
our model have attained very impressive performance, which
are 0.6255, 0.8213, 0.8343, 6.3196 and 7.8924, respectively.
The top method in each of the five types mentioned above is
highlighted in boldface towards a straightforward comparison.
It is obvious that our proposed quality model, in light of the
five evaluation criteria, has delivered the decent performance
compared to those 15 picture QA metrics.

More concretely, it was found that our model has obtained
47.07%, 41.02%, 41.26% relative performance improvements
in terms of KRC, SRC and PLC beyond the best method in the
first type. By comparison with the top method in the second
type, our QA model has derived the relative performance gains
of 41.16% in KRC, 35.04% in SRC and 44.89% in PLC. In a
similar way, our model improves the performance by 54.83%,
46.35%, 42.30% in KRC, SRC and PLC on the basis of the
best method in the third type. From Table I, one can see that
our approach is slightly inferior to the SPQA and GDI models
in the fourth type. However, our quality method employs very
sparse reference information (only two features) while the
SPQA and GDI models require the whole lossless SC picture.
Moreover, we compare the proposed method with the highest-
performance QA model in the fifth type, and the relative
performance gain is 7.20%, 5.09% and 2.96%. It is worth
mentioning that the last type of these methods is devoted to
the quality assessment of SC pictures with partial information
of the pristine SC picture.

Furthermore, the proposed picture QA model is also com-
pared with each of its two components, which are the s-
cores from the MASM and MISM models QMASM(Ṡ, S̈) and
QMISM(Ṡ, S̈). For simplicity, we merely focus on the KRC,
SRC and PLC indices as well. It is observed that the values
of the MASM model are respectively 0.3442 for KRC, 0.4934

for SRC and 0.5114 for PLC, and those of the MISM model
are 0.5603, 0.7532 and 0.7763. Apparently, the proposed QA
metric has delivered better prediction accuracy, leading to 63%
and 12% relative performance gains than the solely MASM
model and MISM model.

(2) Statistical Significance. The f-test is a statistically mean-
ingful way to examine the statistical significance of metrics. In
the f-test, the ratio between two prediction residual variances
denoted by V is employed to compare with the critical
threshold denoted by Vct. When V > Vct, we can have
“+1”, which indicates that one metric is significantly superior
to the other one. When V = Vct, the number “0” is acquired,
which indicates that one metric is no worse than the other.
When V < Vct which corresponds to “-1”, it is illustrated
that one metric is significantly worse than the other one. With
f-test, we find that our QA model is statistically better than
any of metrics in the first, second, third and fifth types. When
our quality model is compared with the two metrics in the
fourth type, which requires the completed information of the
reference SC picture, the statistical significance result is “0”.
This means that our model is statistically matchable with the
SPQA and GDI models. As depicted in Table II, our QA
algorithm is statistically superior to or comparable to all the
QA models tested.

(3) Visualized Comparison. To further illustrate the differ-
ences of those methods tested, we provide the scatter plots
between the human ratings versus the objective quality scores
of 12 testing picture QA models on the SIQAD database, as
illustrated in Fig. 5. The algorithms to be compared include
FSIM, GSM, VSI, PSIM, FTQM, SDM, RWQMS, RQMSC,
PBM, MASM, MISM and our QA algorithm. The consistency
across distinct types of distortions is a well-established in-
dicator to access the effectiveness of a picture QA method.
As shown in Fig. 5, the scatter distributions of sample points
derived from our model are more consistent among the seven
distortion types. As for the other metrics, the scatter distribu-
tions associated to different distortion types are far away from

7
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Fig. 5: Scatter plots of the DMOS values versus the predictions of FSIM, GSM, VSI, PSIM, FTQM, SDM, RWQMS, RQMSC, PBM,
MASM, MISM and our proposed model on the SIQAD database. GN: Gaussian noise; GB: Gaussian blur; MB: motion blur; CC: contrast
change; JP: JPEG compression; J2: JPEG2000 compression; LC: Layer segmentation-based coding.

TABLE III: Comparisons of our model with five types of typical QA models on the SCID database.

TABLE IV: Statistical significance comparison on SCID.

each other. Based on the above comparisons, the scatter plot
of our proposed metric is of good consistency and more robust
among distinct types of distortions. As a consequence, we can
draw the conclusion that in terms of consistency, our model
is better than the compared QA methods as well as the two
components (MASM and MISM models).

C. Cross Validation
We have also introduced one more database (named as

SCID) to corroborate the effectiveness of our model [55]. The
SCID database is, to the best of our knowledge, the largest-
size screen content picture database. It is composed of up to

40 lossless SC pictures and multiple distortion types, includ-
ing Gaussian noise, contrast change, color saturation change,
HEVC-based screen content compression, JPEG compression,
JPEG2000 compression, Gaussian blur and motion blur. There
include five distortion intensities in each distortion type. The
performance of our proposed quality method is tabulated in
Table III. It can be found that our QA model has achieved
impressive results. In particular, it attains 0.5633, 0.7627,
0.7737, 7.2478 and 8.9629 of KRC, SRC, PLC, MAE and
RMS, respectively.

We then carry out the numerical performance comparisons
between our algorithm with five types of typical QA models

8
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(a) QP: 30; prediction score: 43.3; bpp: 0.0727 (b) QP: 40; prediction score: 42.6; bpp: 0.0839 (c) QP: 50; prediction score: 41.0; bpp: 0.0945

(d) QP: 60; prediction score: 39.4; bpp: 0.1059 (e) QP: 70; prediction score: 37.8; bpp: 0.1240 (f) QP: 52; prediction score: 39.6; bpp: 0.0966

Fig. 6: Compressed screen content pictures with different QP values and their corresponding predicted quality scores and bbp values.

on the SCID database. Those five models are FSIM, VIF-
RR, BPRI, GDI and RWQMS, respectively. One can easily
see that the proposed QA model performs better than all
the five models considered. It is worthy to emphasize the
following two points. One is that the relative performance
gain between our method and its same type of RWQMS are
separately 7.77%, 5.29% and 4.53% in terms of KRC, SRC
and PLC. The second point is that we can also find that the
proposed QA model is even superior to the state-of-the-art
GDI, which requires the whole information of lossless screen
content picture. The f-test is further conducted to make the
comparison between our proposed quality method with each
of the above computing QA models, as shown in Table IV. As
seen, our method is comparable to the GDI while outmatches
the other four models. In summary, our QA model works fairly
well not only on the popular SIQAD database, but also on the
largest-scale SCID database.

D. Application
As suggested by ITU-R BT.500-13 [56], the visual percep-

tion can be divided into five levels in the subjective picture
quality assessment: “excellent”, “good”, “fair”, “poor” and
“bad”. In general, the quality of a satisfied picture should be
no worse than “good”; otherwise, the lossy picture will make
the human uncomfortable and even convey wrong semantic
information. According to the range of DMOS used in the
SIQAD database, a satisfied picture’s DMOS should be equal
or less than 40. In such case, the quantization parameter (QP)
is expected to be as small as possible, in order to save network
bandwidth and storage resources.

We can convert the above statement to be an optimization
problem:

arg min QP

s.t. Q(Ṡ, S̈) <= 40. (26)

Our proposed QA model can serve as an optimization criterion
for the purpose of automatically finding the least QP under the
condition of guaranteeing the picture of “excellent” or “good”
quality. Taking the picture shown in Fig. 1 for example, we
solve the above optimization problem to derive that the best
QP value is 52. Its corresponding compressed picture is shown
in Fig. 6(f), and the associated prediction score and bit per
pixel (bpp) are 39.6 and 0.0966, respectively. One can easily
see that the compressed picture optimized by our proposed
QA model meets the requirement of guaranteeing the picture
of “excellent” or “good” quality.

Furthermore, we use five typical QP values to compress the
picture in Fig. 1 for comparison. Their compressed versions
are shown in Figs. 6(a)-(e). Their prediction scores are 43.4,
42.6, 41.0, 39.4 and 37.8 in order. Their bpp values are 0.0727,
0.0839, 0.0945, 0.1059 and 0.1240 in order. Obviously, the
quality scores of compressed pictures in Figs. 6(a)-(c) are
unsatisfied. Next, comparing Figs. 6(d)-(f), the compressed
picture optimized by our proposed QA model is the best since
it has attained the smallest bbp values, or in other words,
consumed the least network bandwidth and storage resources.

V. CONCLUSION

In this paper we have elaborately developed a new quality
evaluation model for automatically assessing the quality of SC
picture. From the complementary perspectives, macroscopic
and microscopic structures are found to reliably capture the
variations of SC pictures after quality degradation. As such,
the overall quality score of a corrupted SC picture is derived
by systematically incorporating the measurements of variations
occurred in the macroscopic and microscopic structures. Based
on the established histogram for dimensionality reduction with
the proposed QA model, only two features serving as the very
sparse reference information are required to be transmitted,
which are ignorable when compared to the entire compressed
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SC picture. In practical applications, we are able to accurately
embed the two features in the file header during transmis-
sion. Experimental results on the SIQAD and SCID database
demonstrate the effectiveness of the proposed QA model by
comparing with the state-of-the-art picture quality assessment
metrics.
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